
Analyzing Ultra-Large-Scale Code Corpus with Boa

Robert Dyer Hoan Nguyen Hridesh Rajan Tien Nguyen
Iowa State University

{rdyer,hoan,hridesh,tien}@iastate.edu

Abstract
Analyzing the wealth of information contained in software
repositories requires significant expertise in mining tech-
niques as well as a large infrastructure. In order to make this
information more reachable for non-experts, we present the
Boa language and infrastructure. Using Boa, these mining
tasks are much simpler to write as the details are abstracted
away. Boa programs also run on a distributed cluster to auto-
matically provide massive parallelization to users and return
results in minutes instead of potentially days.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Distributed programming

General Terms Experimentation, Languages

Keywords MapReduce, software repository mining

1. Background
Repositories such as SourceForge, GitHub, and Google
Code contain over 250,000 projects each. Together, these
represent an enormous amount of software, as well as re-
lated project and bug information, just waiting to be ana-
lyzed. Such a task however is much easier said than done.
There are at least three problems to mining such reposito-
ries: 1) researchers must have significant knowledge about
how to access and mine such data, including all of the li-
braries needed to implement the required infrastructure; 2)
analyzing such a large amount of data using traditional meth-
ods takes a significant amount of time, thus also potentially
requiring knowledge and implementation complexity of par-
allelizing the analysis; and 3) reproducing another research
result is almost impossible, due to the burdens imposed by
the first two problems.

Consider a relatively simple example that wishes to an-
swer the question “how many revisions are there for all Java

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

projects using Subversion in SourceForge?” A typical ap-
proach to this would write a program that does (at a min-
imum) the following: downloads/scrapes project metadata
from the repository, parses this metadata, determines which
projects are Java and use Subversion, accesses the Subver-
sion repository to obtain the revision count, and accumulates
the results into a final answer. Such a solution would require
using several libraries (to parse the metadata and access Sub-
version) and contain upwards of 60 lines of code. This anal-
ysis would also take a significant amount of time, as it runs
sequentially and accesses hundreds of thousands of remote
repositories.

2. Boa
To solve these issues, we present the Boa language and
supporting infrastructure. Boa is inspired by the Sawzall
language [? ] but adds several domain-specific types to ease
software mining tasks. These types represent the mined data
from the repository and abstract the details of how to mine
that data from the user. Boa also abstracts away the details of
the MapReduce framework [? ], which allows the programs
to run in a distributed environment without requiring users
to explicitly mark parallelism in their code.

An example program is shown in Figure 1 which answers
the previous question of how many revisions exist for Java
programs using Subversion. Note how simple this code is - it
is only 5 lines of code! There is also no notion of mining the
software or parallelizing the code, as these are completely
abstracted from the user.

1 total_revisions : output sum of int;
2 p: Project = input ;
3 when (i: some int; match(‘^java$‘, p.programming_languages[i]))
4 when (j: each int; p.code_repositories[j ]. repository_type ==

RepositoryType.SVN))
5 total_revisions << len(p.code_repositories[j ]. revisions ) ;

Figure 1. Program in Boa answering “How many revisions
in Java projects using Subversion?”

To run such programs, our infrastructure builds on the
Sizzle compiler [? ], which generates programs that run on
the Hadoop MapReduce framework [? ]. We add support
for our domain-specific types as well as several language
features not previously implemented, such as quantifiers and



when statements. An example use of these features is shown
in Figure 1 on lines 3 and 4. These statements allow easily
filtering the data, which is then sent as output to a table (line
5). The table provides an aggregation function (several are
built into the language, such as sum, mean, min/max, etc.) to
collect the results and reduce them to a final answer.

3. Benefits of Boa
Boa aims to lower the barrier to entry for researchers wishing
to perform software mining tasks. It also aims to provide
efficient support for performing these tasks on very large
scale repositories.

LOC Time
Task Java Boa Java Boa

Counting revisions 60 4 331m <1m
Counting committers 69 6 1,596m <1m
# Multi-lingual projects 32 4 10m <1m

Figure 2. Three mining tasks implemented in Java and Boa.

Some early results are shown in Figure 2, where we im-
plemented three software mining tasks in both Java and
Boa. These results show significant improvements in lines
of code, requiring only 5 lines of code on average for Boa
programs. They also show considerable speedup in execu-
tion time on an input size of 620k+ projects. The Boa ver-
sions finish in under one minute, whereas the Java versions
take up to 27 hours (a speedup of over 1,500x)! Even in the
simplest case Boa shows speedups of 10x.

In summary, Boa provides the following key benefits:

• simple to write programs (usually around 5 lines),
• details of repository mining abstracted away from users,
• no need to learn libraries to perform repository mining,
• extremely efficient - runs in a fraction of the time of

standard approaches, and
• scalable to ultra-large code repositories.

4. Demonstration Overview
This demonstration showcases the benefits of the Boa lan-
guage and infrastructure via several realistic examples. Soft-
ware engineering questions are proposed and answered us-
ing Boa programs. These example programs are then run on
the Boa web-based infrastructure (see Figure 3), demonstrat-
ing how researchers can successfully answer research hy-
potheses using Boa.

5. Presenter Biographies
Robert Dyer and Hridesh Rajan have prior experience in
developing new programming languages. Rajan developed
the Ptolemy event-based language as well as the aspect-
oriented language Eos. Dyer worked on the implementations

Figure 3. Boa’s web-based interface

and evaluation of the Ptolemy language. They have success-
fully given previous demonstrations at AOSD’10, FSE’10,
ECOOP’11, and SPLASH’11.

Hoan Nguyen and Tien Nguyen are experts in software
evolution and mining software repositories. Their work in-
cludes mining research in clone and API usage evolution,
bug prediction and localization, and traceability link recov-
ery. They are also experts in version control systems with
work on novel infrastructures for semantics-based version
control and configuration management.

All four authors worked on the design of the Boa lan-
guage and infrastructure. Robert Dyer and Hoan Nguyen
also developed the frontend compiler, backend caching
mechanisms, and additional supporting infrastructures.

Acknowledgments
Dyer and Rajan are funded in part by NSF grant CCF-10-
17334. Tien Nguyen and Hoan Nguyen are funded in part
by NSF grant CCF-1018600.


	Background
	Boa
	Benefits of Boa
	Demonstration Overview
	Presenter Biographies

