
Demonstrating Programming Language
Feature Mining using Boa

Robert Dyer
Bowling Green State University

Bowling Green, OH, USA
rdyer@bgsu.edu

Hridesh Rajan Tien N. Nguyen
Hoan Anh Nguyen
Iowa State University

Ames, IA, USA
{hridesh,tien,hoan}@iastate.edu

Abstract
Programming language researchers often study real-world
projects to see how language features have been adopted and
are being used. Typically researchers choose a small number
of projects to study, due to the immense challenges asso-
ciated with finding, downloading, storing, processing, and
querying large amounts of data. The Boa programming lan-
guage and infrastructure was designed to solve these chal-
lenges and allow researchers to focus on simply asking the
right questions. Boa provides a domain-specific language to
abstract details of how to mine hundreds of thousands of
projects and also abstracts how to efficiently query that data.

We have previously used this platform to perform a large
study of the adoption of Java’s language features over time.
In this demonstration, we will show you how we used Boa
to quickly analyze billions of AST nodes and study the
adoption of Java’s language features.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features

Keywords mining; software repositories; language features

1. Background
Programming language researchers often study real-world
software projects to see how language features are being
(mis)used. Typically researchers select a handful of “repre-
sentative” projects to analyze, which can limit the generaliz-
ability of the research. Ideally researchers would study thou-
sands (or more) such projects, but this comes at a great cost
in terms of effort and time. For example, analyzing all the

projects on SourceForge poses several key problems for re-
searchers: 1) researchers would need substantial knowledge
about how to acquire and manage such a large amount of
data; 2) processing the data to make it amenable to min-
ing requires substantial domain knowledge; and 3) querying
such a large amount of data in a reasonable time requires
additional knowledge of distributed computing and makes
implementations more complex.

Even a relatively simple question such as “how have
variable-arity method arguments been used over time?” is
extremely difficult to answer for most researchers. Answer-
ing such a question requires, at a minimum: finding and
downloading a large number of open-source projects, min-
ing the repository data to find source files, parsing the source
code, analyzing the source code, and accumulating the re-
sults. Solving this task would require knowledge of many
libraries (e.g. for accessing the repositories, parsing source
code) and would take substantial time unless the researcher
also writes the queries as distributed programs, which would
add additional time and complexity to solving the task.

1 Varargs: output collection[string][time] of int;

3 fileName: string;
4 commitDate: time;

6 visit(input, visitor {
7 before node: ChangedFile −> fileName = node.name;
8 before node: Revision −> commitDate = node.commit date;
9 before node: Method −>

10 if (len(node.arguments) > 0) {
11 lastArg := node.arguments[len(node.arguments) − 1];
12 if (strfind(”...”, lastArg.variable type.name) > −1)
13 Varargs[input.project url+fileName][commitDate] << 1;
14 }
15 });

Figure 1. Analyzing use of varargs (T... id) over time.

2. Boa
The Boa [2, 3, 5] language and infrastructure was designed
to solve these problems and provide researchers with an easy



to use domain-specific language for writing queries that an-
alyze hundreds of thousands of open-source projects. While
Boa queries look sequential, the server automatically paral-
lelizes the query for efficient execution. Users also do not
need to learn libraries for accessing version control systems,
parsing source code, etc. since Boa has already processed
the data and made it available via a small number of domain-
specific types.

As an example, consider the Boa query shown in Fig-
ure 1. This query finds (line 12) uses of a specific lan-
guage feature available in many languages, variable-arity ar-
guments for methods. It then outputs (line 13) the location of
the use and the commit time. This allows tracking how the
feature was adopted over time.

Figure 2. Boa’s web-based interface [5] for submitting, ex-
ecuting, and viewing results of queries.

Such a query can be submitted to Boa’s website, as shown
in Figure 2. The Boa servers then automatically transform
the query into a distributed Hadoop [1] program and run it
on a cluster. When finished, the results are then available via
the website or can be downloaded for further processing.

3. Benefits of Boa
Boa provides programming language researchers with a
lower barrier to entry for studying language feature use in
real-world software. It allows researchers to easily and effi-
ciently mine hundreds of thousands of projects. In summary,
Boa has the following key benefits for researchers:

• Relatively small and simple queries,
• no libraries needed to access version control or parse

source code,
• queries automatically scale and parallelize, running in

a fraction of the time of standard sequential repository
mining approaches, and

• provides several very large datasets of open-source projects
for analysis.

4. Demonstration Overview
This demonstration shows how researchers can utilize Boa
to mine programming language feature usage in thousands
of open-source projects.

• background and introduction to Boa,
• background on our previous study [4],
• example queries from the study, including how to con-

struct them and showing how to run them,
• demonstrating what to do with the results of queries, and
• pointers on where to find help with using Boa.

At the end of the demonstration, researchers should be
capable of utilizing Boa in their own research.

5. Presenter Biographies
All of the presenters were involved in designing and imple-
menting the Boa project. They have also successfully given
previous demonstrations at SPLASH, ECOOP, ICSE, and
FSE. Both Robert Dyer and Hridesh Rajan have extensive
experience designing and implementing new programming
languages. Tien Nguyen and Hoan Nguyen have extensive
expertise in mining software repositories and software evo-
lution. They are also experts in version control systems.

Acknowledgments
This work was supported in part by the US National Science
Foundation under grants CCF-15-18897, CCF-15-18776,
CNS-15-13263, CNS-15-12947, CCF-14-23370, CCF-13-
49153, CCF-13-20578, TWC-12-23828, CCF-11-17937,
CCF-10-17334, and CCF-10-18600.

References
[1] Apache Software Foundation. Hadoop: open source implemen-

tation of MapReduce. http://hadoop.apache.org/, 2014.

[2] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa:
a language and infrastructure for analyzing ultra-large-scale
software repositories. In ICSE’13, pages 422–431, 2013.

[3] R. Dyer, H. Rajan, and T. N. Nguyen. Declarative visitors
to ease fine-grained source code mining with full history on
billions of AST nodes. In GPCE’13, pages 23–32, 2013.

[4] R. Dyer, H. Rajan, H. A. Nguyen, and T. N. Nguyen. Mining
billions of AST nodes to study actual and potential usage of
Java language features. In ICSE’14, pages 779–790, 2014.

[5] H. Rajan, T. N. Nguyen, R. Dyer, and H. A. Nguyen. Boa
website. http://boa.cs.iastate.edu/, 2015.

http://hadoop.apache.org/
http://boa.cs.iastate.edu/

	Background
	Boa
	Benefits of Boa
	Demonstration Overview
	Presenter Biographies

