Boa: Analyzing Ultra-Large-Scale Code Corpus

Robert Dyer Hoan Nguyen

Hridesh Rajan

Tien Nguyen

Towa State University
{rdyer,hoan,hridesh,tien}@iastate.edu

Abstract

Software repositories contain an enormous amount of infor-
mation such as revisions and bugs. Analyzing this data re-
quires knowledge in mining software repositories and a large
amount of infrastructure. We present our infrastructure Boa
to ease such analyses. Our results show writing analyses with
our framework is simpler and executes faster.

Categories and Subject Descriptors D.1.3 [Concurrent
Programming]: Distributed programming

General Terms Experimentation, Languages

Keywords MapReduce, software repository mining

1. Introduction

There are many very large software repositories, such as
SourceForge (350k+ projects), GitHub (250k+ projects), and
Google Code (250k+ projects). These repositories contain
massive amounts of interesting data with potentially billions
of lines of source code just waiting to be mined. Many re-
searchers and engineers would like to ask questions about
this data however doing so requires a large amount of pre-
vious expertise in software mining and a large amount of
existing infrastructure to perform the mining task(s).

Consider for example a simple question such as “how
many revisions exist on SourceForge for all Java projects
that also use Subversion?” Answering such a question would
require knowledge of (at a minimum): how to read/scrape the
project metadata from the repository, how to mine the code
repository locations, how to access those code repositories,
additional filtering code, controller logic, etc. This assumes
that the query is performed locally and runs on a single ma-
chine, which might take an extremely long time to complete
depending on the task. Writing such a program in Java for
example, would take upwards of 100 lines of code and re-
quire knowledge of at least 2 complex libraries.

Copyright is held by the author/owner(s).

SPLASH’12, October 19-26, 2012, Tucson, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

1 total_revisions : output sum of int;

2 p: Project = input;

3 when (i: some int; match(**java$‘, p.programming_languagesi]))

4 when (j: each int; p.code_repositories[j]. repository_type ==
Repository Type.SVN))

5 total_revisions << len(p.code_repositories]j]. revisions) ;

Figure 1. Program in Boa answering “How many revisions
in Java projects using Subversion?”

Instead, consider the example code written in Boa and
shown in Figure |1} These 5 lines of code not only answer
the question of interest, but run on a distributed cluster po-
tentially saving hours of execution time. Note that writing
this small program required no intimate knowledge of how
to find/access the project metadata, how to access the repos-
itory information, or any mention of parallelization. All of
these concepts are abstracted from the user providing sim-
ple primitives such as the Project type, which contains
attributes related to software projects such as the name, pro-
gramming languages used, repository locations, etc.

2. Related Work

There are a number of languages that provide efficient means
for computing highly data-parallel tasks. These languages
abstract as much of the parallelization details as possible
from the user and scale to large numbers of machines.

Dean and Ghemawat describe a MapReduce system [?]
where users write procedural code to take key-value paired
input, filter it (via mappers), and then aggregate the results
(via reducers). Languages like Sawzall [?] hide some of the
map-reduce framework details from users, by requiring users
to only write the map functions and then select from a set of
pre-determined aggregators. Other languages like Dryad [?
] and Pig Latin [?] provide SQL-like syntax and allow
for more general computations. None of these languages
however provide the software mining benefits of Boa.

3. Approach

Our language’s syntax is inspired by the Sawzall program-
ming language [?]. We also add additional domain-specific
types for software mining. Our compiler is based on the Siz-
zle [?] open source implementation of Sawzall, which runs
on the Hadoop [?] MapReduce [? | framework.

Boa abstracts the notion of map-reduce programs from
the user. Users write only the map portion of a program
and then select from a previously defined set of aggregation
functions. Output in Boa is defined as tables, such as the
table rotal_revisions (line E]) This table can have integers
emitted to it (line[5) and proceeds to use the sum function to
aggregate these integers into a final result, which is the sum
of all values emitted to the table.

Input in Boa (line [2)) is a domain-specific type provided
by the language, the type Project. An overview of the
provided types is given in Figure [2] These types provide
attributes which can be used to filter the data. For example,
this program uses the attributes to select only Java projects
(line[3) that use Subversion (line[d) by using quantifiers and
when statements.

Type Attributes
Project id, name, created_date, code_repositories, . ..

Repository | url, repository_type, revisions
Revision id, log, committer, commit_date, files
Person username, real_name, email

Figure 2. Domain-specific Types Available in Boa

In order to provide the capability to reproduce results and
speed up execution of queries in our language, we cache the
repository data locally on our cluster. First we download the
data in its raw format and then proceed to translate it into
a custom data format. This custom data format is described
using Protocol Buffers, which is a data description format
developed by Google with the goals of making it compact in
binary form as well as extremely fast to parse.

4. [Early Results

Early results are quite promising, as shown in Figure[3] This
table lists 3 different mining tasks. The first counts the num-
ber of revisions for Java projects using Subversion (the code
shown in Figure [T). The second counts the number of com-
mitters for Java projects using SVN. The third determines
how many projects use more than one programming lan-
guage. All tasks were implemented in both Java and in Boa.

LOC Time
Task Java | Boa Java Boa
Counting revisions 60 4 33lm | <lm
Counting committers 69 6 | 1,596m | <lm
Multi-lingual projects 32 4 10m | <Ilm

Figure 3. 3 mining tasks implemented in Java and Boa.
Results for lines of code (LOC) and execution time given.

The results are given in terms of lines of code required
to implement the mining task as well as the running time
on an input size of over 620k projects. The Java versions all
required over 8 times as many lines of code and made use
of several libraries (for SVN and JSON parsing). The Boa
versions however only required around 5 lines of code per

task. The execution times also show impressive results for
Boa, taking less than one minute to run each task whereas the
Java versions ran anywhere from 10 times slower to taking
over a day to answer one single task.

We believe these early results show that our approach
provides several benefits. First, programs are much smaller
and simpler to write. They also require less knowledge about
how you mine software. Second, program execution scales
and thus even when querying extremely large datasets (such
as all of SourceForge) the queries only take one minute.

5. Conclusions and Future Work

Despite having such a large wealth of information available
in code repositories, mining that software is a difficult task
requiring significant expertise not only in the mining tech-
nique used, but many additional libraries and approaches.
There is a significant cognitive and infrastructure burden to
overcome for anyone wishing to perform research in this
area. Our language Boa and the associated framework helps
users overcome this burden.

In the future we plan to extend our approach to additional
repositories (GitHub, Google Code, etc) and additional ver-
sion control systems (Git, CVS, Mercurial, etc). We also
plan to investigate additional methods of abstraction to ease
writing mining tasks and additional language constructs and
data structures to provide further optimizations.

Acknowledgments

Dyer and Rajan are funded in part by NSF grant CCF-10-
17334. Tien Nguyen and Hoan Nguyen are funded in part
by NSF grant CCF-1018600.

	Introduction
	Related Work
	Approach
	Early Results
	Conclusions and Future Work

